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Abstract — 
Japan’s Road networks rely heavily on the 

mountain tunnels due to its topology. During the 
construction of these tunnels, mucking process is 
conducted to remove crushed rocks and rubbles in 
the tunnel with the use of long conveyor belts with the 
size of 3 to 10km. Regular visual inspections of these 
belts are carried out tediously by the workers to 
ensure belt integrity. To reduce the burden on 
workers, the paper proposes a vision based deep 
learning solution deployed on an edge device. 
Proposed framework detects the size of damage 
ranging from 1 cm to 100cm. Edge device deployment 
helps the workers to receive the result in real-time 
regardless of internet availability or working 
conditions. The effectiveness of the proposed 
framework is confirmed on 3 tunnel construction 
sites, with the estimated mean average precision of 
85% for crack detection. The study can be applied in 
other domains of construction industry such as road 
damage or concrete damage categorization. 
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1. Introduction
Japan has a long-standing reputation for excellence

in construction engineering, particularly in the area of 
tunnels. This is due to the country's complex geology and 
densely populated urban areas. Japan has a vast network 
of road and railway tunnels, with recent data showing 
that there are over 5000 kilometers of road tunnels and 

3800 kilometers of railway tunnels [1][2]. With the 
advancement of new tunneling technologies [3][4], there 
is renewed focus on sustainable development through 
shorter construction periods, cost savings, 
environmental preservation, and improved quality. One 
of the frequently used methods is the New Austrian 
Tunneling Method (NATM) [5][6], which is the basis of 
modern tunneling techniques. This method involves 
breaking rocks using explosives, followed by removal of 
the crushed rocks using conveyor belts. However, sharp 
rocks of various sizes can damage the conveyor belts, 
leading to accidents or belt failures [7]. It is therefore 
essential to regularly inspect the belt surfaces for damage 
to prevent such occurrences. 

The inspection of conveyor belts in mountain tunnel 
construction continues to rely on manual visualization, 
which is a strain on inspectors and reduces the frequency 
of inspections due to fatigue. Additionally, stopping the 
conveyor belt during inspections decreases the work 
efficiency of the mucking process and causes delays. To 
address these problems, a new edge AI based deep 
learning framework is proposed to automatically detect 
damage in real-time and provide real-time alerts to safety 
engineers. The proposed system consists of three parts: 
damage detection, frame tracking, and real-time alerting. 
The effectiveness of the proposed method has been 
tested on three different mountain tunnel construction 
sites and has shown potential to enhance productivity 
and safety with an average mean average precision of 
0.85 for damage detection. This solution uses deep 
learning and image processing on an offline edge device 
[8] to provide a real-time alerting platform for damages
on long conveyor belts. 
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2. Literature Review 
Automated inspection of tunnel constructions is a 

challenging but fascinating area for researchers in the 
construction field [9][10][11]. Over time, various 
devices have been developed to address these issues. 
Infrared thermal imaging technology and X-ray based 
nondestructive techniques [12] have been devised to 
detect damage in coal mines. These methods can detect 
cracks, but they require specific image processing and 
high-end, expensive equipment. Recently, AI-based 
methods, especially deep learning algorithms [13][14], 
have been widely used in image classification, detection, 
and segmentation. These methods use high-speed 
CMOS cameras and high-performance computing 
devices to extract features from images. Researchers 
have proposed MATLAB's deep learning solution[15] 
with two-layer neural networks to detect and locate 
conveyor belt damage in real-time. These methods 
provide a good balance of network architecture depth, 
image resolution, detection speed, and mean average 
precision (mAP). They can locate damages of different 
sizes and identify the numbers marked on the side of 
conveyor belts, which indicate the distance and make 
repair easier.  

3. Research methodology 
The methodology for this study has been framed 

around three main areas: data collection to include a 
range of scenarios, experimental setup and applied 
computer vision techniques-  
A. Data collection 

The conveyor belt crack detection (CBCD) dataset 
was developed by collecting 9,362 images from various 
mountain tunnel construction sites. The images were 
passed through data annotation tool [16] to create 
bounding box around different cracks. Figure 1(A) 
shows a sample of data, where the damage area is 
annotated with class id. The annotations are saved for 
each image as the equation [1].  
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[ Where, class id = label index of the class to be 

annotated; Xo = X coordinate of the bounding box’s 
center. 

Yo = Y coordinate of the bounding box’s center. 
W = Width of the bounding box. 

H = Height of the bounding box.  
X = Width of the image 
Y = Height of the image] 
The CBCD dataset is split into training, validation 

and testing set with 70%, 20% and 10% respectively. 

Figure 1. Training dataset for Conveyor belt crack 
detection (CBCD).  (A) shows reflecting surface with 
non-through cracks, (B) shows through cracks while (C) 
shows through cracks with orange lights reflecting 
through it. (D) show scratched surface detected by AI. B 
and C also shows the bounding box around the crack 
area. 
B. Experimental setup 

Figure 2 shows a setup diagram is shown. The 
camera was positioned at the ground facing upwards 
with 1.5 meters between it and the conveyor belt. This 
configuration was intended to be used in construction 
scenarios. In order to maintain the belt's cleanliness, 
water from a stream was poured onto the belt to wash 
away any sled debris. A dark room was prepared with a 
camera mounted inside and lighting set up next to it. This 
provided optimal lighting conditions for filming.  

Cameras require a specific lighting condition to 
properly record footage. A second LED light with an 
orange hue was added to the camera setup to indicate the 
severity of damage. Camera equipment used at 
construction sites in mountain tunnels has a rubber, 
polyester, and rubber layer construction. Each layer is 
10mm thick and the total width of the belts is 0.6 meters. 
The conveyor belts operate at average speed of 
200m/min. 

Crack: 0.82
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Figure 2. Simplified diagram of experiment setup and 
expected output. Edge device’s deep learning and image 
processing program provides output. Top LED orange 
lights provide contrast with respect to bottom white 
lights.   
 
Table 1. Hyperparameters of the YOLOv5 network for 
training on the CBCD dataset. 
 

Hyperparameter Value 
Input size 608 
Learning rate 0.001 
Batch size 64 
Sub-division 16 
Optimizer SGD with momentum 

 
C. Applied computer vision techniques 

The section provides the details of deep learning 
models and image processing techniques used in 
proposed paper.  

a) Deep learning-based detector model –  
Object detection is used for identifying the location 

of cracks. Proposed paper uses a single instance target 
detection algorithm YOLOv5 [17] as a deep learning 
model to detect cracks in real-time. Since the original 
model is trained on the COCO dataset [18] with 80 
general classes like person, cars, trucks etc. However, 
the original model doesn’t include specific object type 
such as cracks in conveyor belts.  

In general, the training dataset contains around 
200,000 images to train the model from scratch. With the 
help of transfer learning technique [19], where the 
original pretrained trained model is reused as a starting 
point for a model on second task. We train YOLO model 
using around 6,550 images from the CBCD dataset for 
30,000 iterations with a batch size of 64 using the initial 
pre-trained weights from ImageNet dataset [20] for the 
first 137 convolutional layers. For training, NVIDIA 
RTX 3090 with 24GB memory was used for continuous 
10 hours. The hyperparameters for the training is shown 
in Table 1. 
b) Optimization of the neural network – 

To run the detection framework effectively in real-
time on the edge devices, proposed paper optimizes the 
YOLOv5 model. Neural networks generally use FP32 
(32-bits floating point precision) [21] to store parameters 
such as weights and biases. Using a higher precision 
increases computational complexity and increases the 
size of the model. Through experiments, it has been 
found that the neural network model using half-precision 
FP16 (16-bit floating point) as parameters has similar 
performance to the neural network model using single-
precision FP32. Therefore, the precision can be reduced 
to FP16 without severe loss of performance. This may 
be because neural networks are very resilient to noise. 
Decreasing the precision value from FP32 to FP16 is 
considered to introduce noise. Furthermore, half-
precision models are very lightweight and show a 
significant increase in inference speed compared to 
single-precision models [21]. Proposed paper performs 
optimizations in the TensorRT framework [22] by 
reducing floating-point precision to FP16 and 
incorporating layers that perform conventional 
operations.  
c) Crack size estimation – 

Proposed paper deploys the optimized TensorRT 
model on the edge device NVIDIA Jetson NX, which 
localizes the cracks. To estimate the crack size in metric 
units, a distance estimation technique proposed by 
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Karney et al. [23] is used. Their approach is essentially 
limited to estimating the distance of an object when its 
true size is known and the focal length, camera sensor 
size and image resolution are fixed. In our approach, the 
distance from the camera to the conveyor belt is fixed 
(1.5 meter) as shown in Figure 2. The only parameter 
that remains to be determined is the crack size, which 
can be evaluated using Equation 2.  

ℋ&'(&) 		=
d × ℎ&'(&),+, × 𝜇- × 1000

ƒ	 × Ι-
	(𝐸𝑞. 2) 

[Where,  ℋ&'(&)	= Crack size in metric units 
(mm); d = Fixed distance of the conveyor belt surface 
from the camera; ℎ&'(&),+,= Height of the crack in pixels 
obtained from the bounding box; 𝜇-  = Height of the 
camera sensor; ƒ  = Focal length of the camera; Ι- 
=Height of the image resolution] 

Size of the cracks  are divided into 3 range as large 
damage size (Hcrack >10cm), medium damage (10cm< 
Hcrack <5cm) and small damage (Hcrack <5cm) shown in 
the table 2.  

4. Result
Three different mountain tunnel construction sites

were selected to run the crack detection and size 
estimation framework on long conveyor belts. The 
trained YOLOv5 model on CBCD dataset achieved a 
combined mean average precision (mAP) of 87% with 
FP32 and 85% with optimized FP16-TRT [21] on small 
edge device. The test was run on 500 images completely 
different from original CBCD dataset. However, the 
optimized model with TensorRT framework (FP16-
TRT) provides significance speed on the edge device 
NVIDIA Jetson NX [8] from 5 FPS (frames per second) 
to 15 FPS as shown in the Figure 3. The frames per 
second (FPS) is calculated by averaging the inference 
FPS for 5,000 iterations. Figure 1 (D) shows a sample of 
the detection result with colored bounding box around 
the crack area with estimated size of 213mm (21.3 cm). 

In Table 2, proposed paper shows the accuracy of 
crack detection by its size. The results presented in Table 
2 are based on crack detection results carried out at the 
mountain tunnel site using NVIDIA Jetson Xavier NX 
device. We collect the samples from the image frames of 
the moving conveyor belt. Thus, the light reflections, 
water and dust on the conveyor belts require us to 
capture the testing data using multiple cameras at 
different locations and angles. We notice that a very 

small false positive for no damages, while the accuracy 
of crack detection reduces as the size of the crack 
reduces. We achieve the highest accuracy of 89.23% for 
large damages and the lowest accuracy of 64.13 for 
smaller damages as smaller damages can get difficult to 
detect due to light reflections or dust appearing on top of 
conveyor belt.  

Figure 3. The comparison of inference speed of the 
original YOLOv5 model and its optimized version. 
Comparison of YOLOV5(YOLOv5-FP32) with 
608x608 input resolution and its optimized version in 
TensorRT (YOLOv5-FP16-TRT). The frames per 
second (fps) is calculated by averaging inference fps for 
5,000 iterations. 

Table 2: Table shows the accuracy of the detection for 
various crack sizes 

Damage 
size 

# Of 
sample 

Detected Not 
detected 

Accuracy 
(%) 

Large 
damage 
(size 
>10cm)

103 92 11 89.3 

Medium 
damage 
(10<size 
<5cm) 

120 91 29 75.8 

Small 
damage 
(size 
<5cm) 

92 59 33 64.1 

Through 
damage 

34 28 6 82.4 

No 
damage 

500 4 496 99.2 

YOLOv5-FP32 YOLOv5-FP16-TRT

YOLOv5-FP32 YOLOv5-FP16-TRT
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5. Discussions and Conclusions
Long conveyor belts are widely used in various

industries for transporting rocks, sand, and other 
heterogeneous materials over long distances. However, 
the manual inspection of these belts to detect damage is 
time-consuming and expensive, and current methods 
that use infrared laser light, x-rays, sound, magnetic, and 
ultrasound energy are also costly and have limited ability 
to detect large damage. In this study, we propose a 
simple and cost-effective method to detect and locate 
conveyor belt cracks in real-time. Our proposed system 
runs on edge devices and uses a server that operates 
offline. The system uses a CBCD dataset of 9,362 
images to train a YOLOv5 model, optimized to execute 
inference on lightweight devices. The optimized model 
can detect cracks and track on the conveyor belt with a 
mean average precision of 85% and can process 15 
frames per second on resource-constrained devices. The 
severity of the damage is estimated by fixing the 
camera's distance from the conveyor belt and using a 
monocular camera to categorize the size of the damage. 
Further improvement can be made by combining 
multiple video frames to identify crack regions in the 
conveyor belt.  

At this stage, our proposed model for detecting and 
locating conveyor belt cracks in real-time is novel and 
compares favorably to existing methods in the field. To 
check the novelty of our proposed model, we reviewed 
the literature for belt tear detection, a vision-based 
method developed by Guo et al. [13] detects large size 
damages using YOLOv5-m [17] with a mean average 
precision (mAP) of 82.5%. However, this method fails 
to identify small or medium size damages. Similarly, 
Agata et al. [15] proposed an artificial intelligence-based 
approach for the classification of conveyor belt damage 
using a two-layer neural network and achieved an 
accuracy of 80%. Another method based on Haar-Ada 
Boost and Cascade algorithm was proposed by Wang et 
al. [14], where longitudinal tears of a conveyor belt 
under uneven light were detected with an accuracy of 
97%. These methods can only detect large types of 
damage, whereas our proposed method can detect 
various types of damage and improve the overall 
detection accuracy, as shown in Table 2. 

In conclusion, our proposed method provides a 
simple, inexpensive, and sustainable solution for 
detecting and locating conveyor belt cracks in real-time. 
The optimized model has a high accuracy and can detect 

both cracks and digits on the conveyor belt, while 
categorizing the severity of the damage using a 
monocular camera. Our proposed method has the 
potential to revolutionize the field and make manual 
inspection of conveyor belts a thing of the past. A more 
detailed study will be presented in an upcoming journal. 
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